- · 《现代远距离教育》期刊[06/30]
- · 《现代远距离教育》投稿[06/30]
- · 现代远距离教育版面费是[06/30]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
计算机软件及计算机应用论文_基于时空约束密度
作者:网站采编关键词:
摘要:文章摘要:基于移动终端位置数据的居民活动模式分析具有良好的研究前景。为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先
文章摘要:基于移动终端位置数据的居民活动模式分析具有良好的研究前景。为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-Means的DBSCAN(DensityBased Spatial Clustering of Applications with Noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇。然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇。接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇。最后,利用基于KD-Tree优化的KNN(K-Nearest Neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明:该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。
文章关键词:
项目基金:《现代远距离教育》 网址: http://www.xdyjljygw.cn/qikandaodu/2022/0128/755.html